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1. Models Using First-Order Differential Equations

1.1. Modelling with Separable Differential Equations

Mathematical models are rarely realistic. So, what is their purpose? The value lies in their ability

to evolve. When a model predicts something nonsensical, it highlights where the simplifications fall

short. You refine the model, adding complexity to better align it with reality. This iterative process

mirrors life itself: start simple, and work towards something more realistic.

Take sinθ = θ as an example. Is it accurate? No, but it’s a reasonable approximation for small θ .

To improve it, we can use sinθ = θ −θ 3/6. Is that entirely true? Not quite, but it is closer to the truth.

And with further refinements, we can get even better approximations.

Definition 1.1 (separable DE). A first-order differential equation is separable if it can be

written as

M (x) dx = N (y) dy.

Notice that in this form, we say that we have separated the variables as everything involving x

is on one side and everything involving y is on the other.

One should know how to solve such differential equations as shown in Definition 1.1 from one’s

high school days (or even MA2002) — simply integrate both sides, i.e.∫
M (x) dx =

∫
N (y) dy+ c.

Example 1.1 (radioactive decay). Experiments show that a radioactive substance decomposes at a

rate proportional to the amount present. Starting with a sample containing 2 mg of this substance at

certain time, say t = 0, what can be said about the amount available at a later time?

Solution. There could be a variety of radioactive materials present, and some of them might contribute

to generating the substance we are analysing. As such, we shall deliberately disregard all other

materials. So,
dm
dt

=−km

where m(t) is the amount of substance at time t, so m(0) = 2. Also, k is some arbitrary constant. With

some algebraic manipulation, we have

1
m

dm =−k dt.

Note that this admits the form in Definition 1.1, so one can integrate both sides to obtain

ln
(m

c

)
=−kt which implies m = ce−kt .

Here, c is also an arbitrary constant. Setting m(0) = 2, we have c = 2, so m = 2e−kt — anyway, this

means that the radioactive substance will decay at an exponential rate. This process is commonly

known as an example of exponential decay. □
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Example 1.2 (black holes). Stephen Hawking discovered that black holes lose mass over time, in

addition to gaining it through the process of accreting matter. He developed a model to describe this

complex phenomenon by simplifying the situation: he disregarded the details of matter falling into

the black hole and concentrated solely on the radiation emitted, known as Hawking radiation. The

rate of mass loss is described by the following differential equation:

dM
dt

=− h̄c4

15360πG2M2

where t is time, M is the mass of the black hole, h̄ is the reduced Planck’s constant, c is the speed of

light, and G is the universal gravitational constant.

One can easily compute the time T it takes for a black hole to disappear completely, i.e. the lifetime

of a black hole with initial mass M0. We have

T =
5120πG2M3

0
h̄c4 .

Example 1.3 (planetary orbit). The orbit of a planet represents the path it follows as it moves around

the Sun. In reality, this trajectory is highly complex due to gravitational influences from other planets,

which pull on it from various directions. Isaac Newton, however, devised a simplified model of this

situation by focusing exclusively on the interaction between the Sun and a single planet. He ignored

the effects of other planets, asteroids, and miscellaneous items, as well as the fact that the Sun is not a

perfect sphere, among other complexities. This approach allowed him to derive foundational insights

into planetary motion.

In order to understand Newton’s model of planetary orbits, one needs to recall polar coordinates

(recall from MA2104)! Using his laws of motion, Newton discovered that a planet in his model has

an orbit which satisfies the differential equation(
du
dθ

)2

+(u−A)2 = B2,

where u(θ) = 1/r (θ) and A,B > 0 are constants with B/A < 1. Note that r (θ) is the equation of our

graph in polar coordinates.

This differential equation is separable, i.e. one can show that

dθ =
du/B√

1−
(u−A

B

)2
.

Integrating both sides yields

θ + c = arcsin
(

u−A
B

)
.

Since u = 1/r, it follows that

r =
1/A

1+ B
A sin(θ + c)

.
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Since B/A < 1, we would see that this curve looks like an ellipse†! As such, in this simplified model

of the solar system, all the planets have elliptical orbits (also known as Kepler’s first law of planetary

motion).

Example 1.4 (MA3264 AY24/25 Sem 1 Tutorial 1). Solve the equation y′ = y, y(0) = 1, in the

following way: assume that y has an expansion of the form

y = a0 +a1x+a2x2 + . . .

and use the equation and the initial conditions to find the numbers an for all n. Next, consider the

equation

y′ = 2
√

y where y(x)≥ 0 and y(0) = 0.

The previous method doesn’t work. So find the solution in some other way.

Example 1.5 (MA3264 AY24/25 Sem 1 Tutorial 1). One theory about the behaviour of moths states

that they navigate at night by keeping a fixed angle between their velocity vector and the direction of

the Moon. A certain moth flies near to a candle and mistakes it for the Moon. What will happen to the

moth?

Hint: In polar coordinates (r,θ), the formula for the angle ψ between the radius vector and the velocity

vector is given by

tanψ = r
dθ

dr
.

If you wish to derive this formula, recall that the tangential component of a small displacement in polar

coordinates (r,θ) 7→ (r+dr,θ +dθ) is rdθ and the radial component is just dr. Use the formula to

solve for r as a function of θ .

1.2. Modelling with Linear Differential Equations

Example 1.6 (melting ice). The Arctic Ocean plays a crucial role in the global climate system, as

it is the region most impacted by global warming. It is warming at approximately three times the rate

of the rest of the planet, with the pace continuing to accelerate.

The surface of the Arctic Ocean consists of both ice-covered areas and open water. Let I (t) represent

the area covered by ice and W (t) the area of open water, both as functions of time. The temperature

T (t) is also time-dependent. The rate of change of the ice-covered area, I (t), is negatively influenced

by the temperature T (t), while the rate of change of the temperature is positively affected by W (t).

As such, we obtain the following pair of differential equations:

dI
dt

=−aT and
dT
dt

= bW where a,b > 0 are constants

This relationship arises because ice, being highly reflective (a property known as having high albedo),

reflects most sunlight, preventing it from absorbing significant heat. In contrast, open water, which
†Given the range of values of the ratio B/A, we can obtain various conic sections.
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appears dark blue or nearly black, absorbs heat efficiently. Consequently, when W (t) is large, more

heat is absorbed, causing the temperature to rise.

The equations are called linear because of the absence of terms like T 3 or cosW — we only see

T and W . The trick to solving such a pair of simultaneous equations is to differentiate one of the

equations. In particular, we differentiate the first equation and substitute into the second one to obtain

d2I
dt2 =−abW.

We note that the total area of the Arctic Ocean is a constant, which is equal to I +W . Differentiating

a constant twice yields 0, so

d2I
dt2 +

d2W
dt2 = 0 which implies

d2W
dt2 = abW.

We will learn how to solve such differential equations in Chapter 2. Anyway, one checks that

W (t) = Ae
√

abt +Be−
√

abt satisfies the differential equation.

Here, A and B are some constants. Unless A = 0, the expression will blow up exponentially fast, with

W increasing rapidly till it reaches the total area, and there will not be any ice at all. In fact it is feared

that exactly this will happen some time this century!

Of course, this hasn’t happened (yet), which suggests that there is a potential flaw in our model. How-

ever, nothing is actually wrong since it is just a model after all! The Arctic Ocean is an extraordinarily

complex system governed by hundreds, if not thousands, of parameters and interrelated processes.

Nevertheless, we need to begin somewhere.

First-order linear ODEs are very useful. However, the problem is that hey are not always separable.

Having said that, there is a trick that allows us to solve them.

Proposition 1.1 (integrating factor). Consider linear differential equations of the form

dy
dx

+ yP(x) = Q(x) ,

where P and Q are functions of x. One can solve such differential equations by multiplying both

sides of the equation by an integrating factor µ (x), then use the product rule, where

µ (x) = exp
(∫

P(t) dt
)
.

Proposition 1.1 has already been covered in MA2002 so we will not discuss further. Now, what

happens if the differential equation is neither separable nor linear? One nice instance is when we come

across a Bernoulli equation (Definition 1.2).
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Definition 1.2 (Bernoulli equation). The differential equation

dy
dx

+ yP(x) = Q(x)yn,

where n ∈ R, is a Bernoulli equation.

Again, Definition 1.2 has already been covered in MA2002 — the trick to solving such equations

is to introduce the substitution z = y1−n.

Example 1.7 (mixing problem). At time t = 0, a tank contains 2 kg of salt dissolved in 100 ℓ of

water. Assuming that the water containing 0.25 kg of salt per litre is entering the tank at a rate of

3 ℓ/min and the well-stirred solution is leaving the tank at the same rate. Find the amount of salt at

any time t. Again, such questions have already been discussed in MA2002 so we will skip.

Example 1.8 (mixing problem). Imagine an experiment where a planet with a pristine atmosphere

begins receiving 50 billion tons of CO2 annually. The CO2 mixes uniformly with the air, while

biological and geological processes remove it, keeping the total atmospheric volume nearly constant.

Based on what we have discussed thus far, the concentration of CO2 would rise exponentially toward

a limiting value.

Warned by their scientists, the planet’s inhabitants immediately reduce the CO2 concentration in their

emissions at a rate inversely proportional to time.

Now, consider the following analogous problem. A tank contains 100 m3 of pure air (negligible CO2)

at t = 1 second. At that moment, polluted air with a CO2 concentration of 10/t ℓ/m3 starts flowing

in at 10 m3/s. The mixture in the tank is pumped out at the same rate. Plot the quantity of CO2 in the

tank as a function of time.

Solution. We have
dQ
dt

=
100

t
− Q

10
with initial condition Q(1) = 0.

The integrating factor is et/10 so we obtain

Q(t) = 100e−t/10
[

Ei
( t

10

)
−Ei

(
1

10

)]
.

Here, Ei(x) denotes the exponential integral (Definition 1.3).

Definition 1.3 (exponential integral). For real non-zero values of x, define Ei(x) to be

Ei(x) =
∫ x

−∞

et

t
dt.

Figure 1 shows the graph of Q(t).

We see that the amount of CO2 in the tank increases for some time even though the concentration in
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Figure 1: Graph of Q(t)

the gas entering the tank is decreasing. It reaches a rather high maximum, before decreasing rather

slowly. This is known as the dreaded momentum effect, i.e. even if we start drastic reductions of CO2

release now, the amount of it in the atmosphere will increase for a long time and will only be reduced

to safe levels in the distant future†. □

Example 1.9 (radioactive decay). Sometimes, the product of radioactive decay is itself a radioactive

substance that undergoes decay at a different rate. An example is uranium-thorium dating, a method

used by paleontologists to estimate the age of fossils, particularly ancient corals.

Corals filter seawater, which contains trace amounts of uranium-234, a radioactive isotope. These

corals absorb uranium-234 into their skeletons while alive. Over time, uranium-234 decays (to be

precise, the type of radioactive decay that uranium-234 goes through is alpha decay) into thorium-230,

another radioactive element via the equation

234
92 U →230

90 Th+4
2 α.

Uranium-234 has a half-life of 245,000 years, while thorium-230 has a shorter half-life of 75,000

years.

Thorium-230 is not naturally present in seawater, so when a coral dies, its skeleton contains uranium-

234 but no thorium-230. This is because the coral’s lifespan is negligible compared to uranium-234’s

half-life. However, over time, as uranium-234 decays, thorium-230 begins to accumulate in the coral

skeleton. By measuring the ratio of uranium-234 to thorium-230 in a coral sample, we can estimate

the time elapsed since the coral’s death — its age.

†One can look up ‘representative concentration pathway’ for more notes on this
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This information is crucial for understanding events like mass coral die-offs. If corals have historically

died off regularly over long periods, it might suggest that current coral deaths are part of a natural

cycle rather than solely caused by global warming.

To model this process, we make certain simplifying assumptions. Although other radioactive materials

may be present, we ignore them because the decay products of thorium-230 typically decay much

faster than uranium-234 or thorium-230 itself. Therefore, their contributions are negligible for our

purposes.

Let U (t) represent the number of uranium-234 atoms in the coral sample at time t, and T (t) represent

the number of thorium-230 atoms. Since each uranium-234 atom decay produces one thorium-230

atom, the rate at which thorium-230 is produced equals the rate at which uranium-234 decays.

Consequently, we have the following relationships for the decay rates:

dU
dt

=−kUU and
dT
dt

= kUU − kT T,

where kU and kT are constants with kU ̸= kT , and U (0) =U0 and T (0) = 0. We wish to find t given

that we know the ratio of T (t) to U (t) at the present time. Solving with the given data (first equation)

yields

U =U0e−kU t .

One can attempt to solve for kU and kT , which are

kU =
ln2

245,000
and kT =

ln2
75,000

.

The second differential equation yields

dT
dt

+ kT T = kUU0e−kU t .

Solving with T (0) = 0 yields

T (t) =
kU

kT − kU
U0

(
e−kU t − e−kT t

)
.

Although we do not know the value of U0, we can consider the ratio T/U , which is

T
U

=
kU

kT − kU

[
1− e(kU−kT )t

]
.

So, if we compute the ratio T/U at the present time, we can solve for t and obtain our answer!
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2. Models Using Second-Order Differential Equations

2.1. Introduction

We will need to study ordinary differential equations of the form

a
d2y
dx2 +b

dy
dx

+ cy = f (x) ,

where a,b,c are real constants and f (x) is some given function. There is a systematic way of solving

such ODEs.

Observe that since there are two derivatives present, we would need to integrate twice. Integrating

once yields a constant, so the general solution of a second-order ODE must involve exactly two

constants. To find them, we generally work with the initial conditions y(0) and y′ (0) (which are

usually known quantities). We then end up with two equations for two unknowns, which determine

the two constants.

Definition 2.1 (characteristic equation). Consider the differential equation

a
d2y
dx2 +b

dy
dx

+ cy = 0.

Its characteristic equation is

aλ
2 +bλ + c = 0.

Note that in Definition 2.1, the characteristic equation is also known as the auxiliary equation.

Note that here, we have taken f (x) = 0. To find two solutions S1 and S2 to the equation, we consider

the corresponding characteristic equation aλ 2+bλ +c = 0. The idea here is that if λ is real, then eλx

is a solution. Usually, we obtain two solutions†, i.e. two numbers λ1 and λ2. As such, we obtain two

solutions S1 = eλ1x and S2 = eλ2x.

However, two things can potentially go wrong.

• Case 1: The quadratic equation might have only one root λ (which must be real since a,b,c are

real). Then, we will take S1 = eλx and S2 = xeλx. One should verify by direct substitution that

this indeed works.

• Case 2: We might obtain two solutions, which are complex. In fact, by the conjugate root

theorem, the roots of the quadratic equation form conjugate pairs. We focus on one of them, and

write it as

λ = α +β i where α,β ∈ R.

†Here is a fun exercise that is related to ST2131. Given the quadratic equation Ax2 +Bx+C = 0 with A,B,C ∼U (0,1),

i.e. A,B,C are uniformly distributed on the interval (0,1), what is the probability that the roots of the quadratic equation

are real?
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Then, we take

S1 = eαx cosβx and S2 = eαx sinβx.

Again, one should substitute these into the differential equation to be convinced that S1 and S2

are indeed solutions. Actually, these do not look so strange if we recall Euler’s formula, which

states that

eiθ = cosθ + isinθ .

In all cases, we will be able to deduce the solutions S1 and S2, provided that a,b,c are constants.

For the case where f (x) ̸= 0, suppose we have some miraculous way of deducing one solution to

the differential equation. Call this solution y = P(x), known as the particular solution. Then, we can

find the general solution to the differential equation as follows. Consider

a
d2S1

dx2 +b
dS1

dx
+ cS1 = 0

a
d2S2

dx2 +b
dS2

dx
+ cS2 = 0

a
d2P
dx2 +b

dP
dx

+ cP = 0

We multiply the first equation by an arbitrary real number A and multiply the second by an arbitrary

real number B. Thereafter, we add the three equations to obtain

a(AS1 +BS2 +P)′′+b(AS1 +BS2 +P)′+ c(AS1 +BS2 +P) = f (x) ,

so we infer that AS1 +BS2 +P is the general solution to the differential equation! This works due to

the linearity of the derivative operator, and because the equation is also linear (inherently used the

principle of superposition here). This method is not applicable to non-linear ODEs though.

Example 2.1. Solve the differential equation

d2y
dx2 − y = e2x.

Solution. Note that the differential equation can be written as

d2y
dx2 − y = 0+ e2x.

We first find the complementary solution. That is, the set of all y such that

d2y
dx2 − y = 0.

The characteristic equation is λ 2 −1 = 0, so λ =±1. Hence, S1 = ex and S2 = e−x.

Now, we find the particular solution. The only way to obtain e2x on the RHS is if it is already there

on the LHS. As such, we try P(x) = ce2x, where c has to be found. Since P satisfies the differential
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equation, we have

4ce2x − ce2x = e2x which implies c =
1
3
.

Hence, P = e2x/3. Combining the complementary solution and the particular solution yields the

general solution, which is

y = Aex +Be−x +
1
3

e2x.

□

However, there are times where the method to finding the particular solution in Example 2.1 does

not work. Let us take a look at Example 2.2.

Example 2.2. Solve the differential equation

d2y
dx2 − y = ex.

Finding the complementary solution is precisely the same as Example 2.1 since both differential

equations share the same characteristic equation. Now, if we try P(x) = cex as our particular solution,

we will see that 0 = ex, which is an obvious error. As such, we need to amend the particular solution

(the method to finding the particular solution is somewhat systematic) — try P(x) = cxex. We will

see that
d2P
dx2 −P = 2cex which implies 2c = 1.

Hence, c = 1/2 and the desired general solution is

y = Aex +Be−x +
1
2

xex.

Examples 2.1 and 2.2 are great examples of finding particular solutions. The given method works

because if we have an exponential function on the RHS, taking derivatives of exponential functions

would give exponential functions. Similarly, it always works for polynomials and for products of

exponential functions with polynomials. However, this method does not work if we have functions

like tanx on the RHS!

Example 2.3. Now, what if we wish to solve a differential equation like

d2y
dx2 + y = cosx?

The easy way to handle this is to remember that cosx and sinx are really just names of the real

and imaginary parts of eix respectively. As such, consider z(x) to be a complex function such that

Re(z) = y. Then, say we have the equation

d2z
dx2 + z = eix.

This is easy to solve because we know what to do when we have an exponential function on the RHS!

As such, we solve for z. As we are interested in y, upon finding z, we just take the real part of that.
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Again, we first find the complementary solution. We first solve

d2

dx2 + y = 0.

The characteristic equation is λ 2 +1 = 0, so λ =±i. Hence,

S1 = cosx and S2 = sinx.

Next, try P(x) = ceix, which does not work. As such, we try P(x) = cxeix, for which we obtain

2iceix = eix. So,

c =
1
2i

=−1
2

i.

Hence,

P(x) =−1
2

ixeix =−x
2
(−sinx+ icosx) .

The real part of P is xsinx/2, so the general solution to the differential equation is

y = Acosx+Bsinx+
1
2

xsinx.

2.2. Stability

Definition 2.2 (pendulum equation). Consider a pendulum. Let θ be the angle with the

vertical and let L be the length of the pendulum. Then, using Physics (briefly see Figure 2),

one can deduce that a differential equation governing θ is as follows:

d2θ

dt2 +
g
L

sinθ = 0.

Sometimes, d2θ/dt2 is written as θ̈ , which also denotes the second derivative of the angle with

respect to time.

θ

acosθ

asinθ

g

θ

Figure 2: A free-body diagram of a pendulum bob

It is possible to solve the pendulum differential equation (Definition 2.2), but this involves complicated

concepts in Mathematics like elliptic integrals.
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Let us simplify the setup. An obvious solution is θ = 0, which is known as an equilibrium solution,

meaning that θ is a constant function. This means that if we set θ = 0 initially, then θ will remain at

0 and the pendulum will not move — which of course know is correct. There is another equilibrium

solution which is θ = π . Again, in theory, if we set the pendulum exactly at θ = π , then it will remain

in that position forever. In reality, it will not due to gravity! As such, the equilibrium at θ = π is very

much different from the one at θ = 0 (an important distinction).

Definition 2.3 (equilibrium). The equilibrium of an object is said to be stable if a small push

away from equilibrium remains small. If the small push tends to grow large, then the equilibrium

is unstable.

The concept of equilibrium is particularly important for engineers as they want vibrations of

structures, engines, etc. to remain small.

We shall analyse the case where θ = π . By Taylor’s theorem, near θ = π , we have

f (θ) = f (π)+ f ′ (π)(θ −π)+
1
2

f ′′ (π)(θ −π)2 + . . . ,

and upon letting f (θ) = sinθ , we obtain the following series expansion:

sinθ = 0− (θ −π)−0+
1
6
(θ −π)3 + . . .

For small deviations away from π , note that θ − π is small, and (θ −π)3 is much smaller. So, we

have the following approximation:

sinθ ≈−(θ −π)

As such, the pendulum differential equation in Definition 2.2 can be approximated as follows:

d2θ

dt2 ≈ g
L
(θ −π) .

Using the substitution φ = θ −π , the differential equation can be written as

d2φ

dt2 =
g
L

φ .

This equation has the general solution

φ = Ae
√

g/Lt +Be−
√

g/Lt

so

θ = Ae
√

g/Lt +Be−
√

g/Lt +π.

Since the exponential function grows very quickly, even if θ is close to π initially, it will not stay near

it very long. Very soon, θ will arrive at either θ = 0 or θ = 2π , which is far away from θ = π . This

equilibrium is unstable! So, we ask how long would it take for things to get out of control? This is

determined by the quantity in the exponent of the exponential term which is
√

g/L. Note that it takes

longer for the pendulum to fall if L is large.
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2.3. Damped Oscillations

When an object moves fairly slowly through air, the resistance due to friction is approximately

proportional to its speed, and of course in the opposite direction. One would recall Hooke’s law from

H2 Physics. In fact, we can extend it to the following differential equation (Definition 2.4):

Definition 2.4 (simple harmonic oscillator).

m
d2x
dt2 + kx = 0

This equation describes the oscillation of a block of mass m on one of a spring and a nail on the

other end. Here, x measures how much the spring is stretched and k is a positive constant that

measures the stiffness of the spring (known as the spring constant).

If we include friction which is proportional to the speed, we obtain

m
d2x
dt2 +b

dx
dt

+ kx = 0,

where b is a positive constant known as the damping coefficient. It quantifies the resistance to motion

provided by the medium (such as air or fluid), often associated with dissipative forces like friction or

drag. As such, the corresponding characteristic equation is

mλ
2 +bλ + k = 0.

Note that m,b,k > 0. Let us discuss the solutions to this differential equation. We consider three cases

on the nature of the roots.

• Case 1: λ1 and λ2 are real, which results in overdamping

Example 2.4. Consider the differential equation

d2x
dt2 +3

dx
dt

+2x = 0.

Its characteristic equation is λ 2 +3λ +2 = 0, which yields the roots λ =−1 and λ =−2. The

general solution is

x = B1e−t +B2e−2t .

We see that the motion rapidly dies away to zero, which implies that there is much friction.

• Case 2: λ1 and λ2 are complex, which results in underdamping

Example 2.5. Consider the differential equation

d2x
dt2 +4

dx
dt

+13x = 0.

Its characteristic equation is λ 2+4λ +13 = 0, which yields the roots λ =−2±3i. The general

solution is

x = B1e−2t cos3t +B2e−2t sin3t,
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which by the R-formula (from O-Level Additional Mathematics), can be also written as

x =
√

B2
1 +B2

2e−2t cos
(

3t − π

4

)
.

This acts like a simple harmonic oscillator, where the amplitude
√

B2
1 +B2

2e−2t is a function

of time. Note that in this problem, there are two independent time scales. First, the factor e−2t

determines how quickly the oscillations decay over time. This decay is governed by the real part

of the roots. Next, the angular frequency of oscillation is determined by the imaginary part of

the roots. The oscillation period is

T =
2π

ω
=

2π

3
where ω = 3 is the angular frequency.

This represents the rapidity of oscillations within the decaying envelope.

2.4. Forced Oscillations

Now, consider the case where an external motor is attached to the block of mass m. This motor

exerts a force of F0 cosαt, where F0 is the amplitude of the external force and α is the frequency. If

F0 = 0, then by Newton’s second law, we have

m
d2x
dt2 + kx = 0

so we obtain the differential equation

d2x
dt2 +ω

2x = 0 where ω =

√
k
m
.

Here, ω is the frequency that the system has if we leave it alone, i.e. its natural frequency. It is not

related to α .

If F0 ̸= 0, then we have

m
d2x
dt2 + kx = F0 cosαt.

Let z be a complex function that satisfies the differential equation

m
d2z
dt2 + kz = F0eiαt .

The real part, Rez, satisfies this differential equation, so we can solve for z and then take the real part.

Try

z = ceiαt to be a solution.

One can deduce that

c =
F0/m

ω2 −α2 which implies Rez =
F0/m

ω2 −α2 cosαt.
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We conclude that the general solution is

x = Acos(ωt −δ )+
F0/m

ω2 −α2 cosαt,

where δ is some constant (we will explain in just a bit). Note that upon differentiation, we obtain

dx
dt

=−Aω sin(ωt −δ )− aF0/m
ω2 −α2 sinαt.

The constants A and δ are fixed. One can deduce these values from x(0) and ẋ(0) as usual, where we

recall that ẋ(0) is dx/dt evaluated at t = 0.

Example 2.6. As an example, if x(0) = ẋ(0) = 0, then we have

Acosδ +
F0/m

ω2 −α2 = 0 and Aω sinδ = 0 respectively.

Assuming that F0 ̸= 0, we cannot have A = 0, which forces δ = 0. Hence,

A =− F0/m
ω2 −α2 which implies x =

F0/m
ω2 −α2 (cosαt − cosωt) .

2.5. The Phase Plane Method

Newton’s second law involves time derivatives, but sometimes it can be expressed in terms of

spatial derivatives by using the chain rule. That is to say

d
dx

[
1
2

(
dx
dt

)2
]
=

d2x
dt2 .

Recall Definition 2.4 on the differential equation governing simple harmonic oscillation, which is

m
d2x
dt2 + kx = 0.

As such, we can rewrite it as follows:

m
d
dx

[
1
2

(
dx
dt

)2
]
=−kx.

Integrating both sides yields

1
2

m
(

dx
dt

)2

=−1
2

kx2 +E,

where E is a constant. In fact this is not surprising as E is the total energy of the system! Since dx/dt

denotes velocity, one would know that

1
2

m
(

dx
dt

)2

denotes the kinetic energy and
1
2

kx2

of the oscillator respectively. One should recall that the fact that E is constant is known as the

conservation of energy.
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This idea of turning time derivatives into space derivatives can be very useful when studying certain

kinds of second-order non-linear differential equations. For example, we recall the pendulum problem

(Definition 2.2) which is governed by the differential equation

d2θ

dt2 + sinθ = 0 with initial conditions θ (0) = 1 and θ̇ (0) = 1.

Here, we have taken g/L = 1. Although we cannot find elementary solutions for this differential

equation (recall that we can do so but the solution involving elliptic integrals would be non-

elementary), we can still can gain some insights such as determining the maximum value of θ . This

is simple as we have θ̇ (t) = 0. Solving yields θmax ≈ 1.53.

In fact, there is a nice way of thinking about what we did. One can look at the equation involving

θ̇ and use it to think of θ̇ as a function of θ . If we graph that function, we can see that the graph

is a closed curve. As time goes by, the point
(
θ , θ̇

)
moves around and around the closed curve. As

such, the solution must be a periodic function of time. This makes sense as the physical system is a

pendulum. We call this the phase plane method.

Example 2.7. We analyse the differential equation

d2y
dt2 +

1
2

cosy = 0 with initial conditions y(0) = 0 and ẏ(0) = 1.

Figure 3 shows the graphical solution to this differential equation. Note that the equation describes a

non-linear oscillator, which should still typically produce bounded and oscillatory motion. In fact, for

large t, y(t) tends to infinity! What is really happening here?

Figure 3: Solution to
d2y
dt2 +

1
2

cosy = 0 with initial conditions y(0) = 0 and y(0) = 1
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We note that we can write the differential equation as

d
dt

[
1
2

(
dy
dt

)2
]
+

d
dy

(
1
2

siny
)

dy
dt

= 0

d
dt

[(
dy
dt

)2

+ siny

]
= 0(

dy
dt

)2

+ siny = c

Substituting the initial conditions yields c = 1, so(
dy
dt

)2

+ siny = 1,

which is the phase plane equation for the differential equation. On the (y, ẏ) phase plane, as the system

moves from the point (0,1) to the point (π/2,0), it actually never gets there! One can use the method

of separation of variables to obtain

t =
∫

π/2

0

1√
1− siny

dy =
∫

π/2

0

√
1+ siny
cosy

dy ≥
∫

π/2

0
secy dy

which is infinite. As such, the correct graph is not the one produced by Wolfram Mathematica (for

instance), but rather the one in which y asymptotically approaches π/2. As such, the phase plane

method helps us spot this error made by computers.
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3. Population Models

3.1. The Malthusian Model for Population Growth

Population modelling is a crucial area of applied mathematics that uses differential equations

to understand the dynamics of populations. These models can reveal surprising and sometimes

counterintuitive behaviors in various species, from fish to humans.

The total population of a country, denoted as N (t), is clearly a function of time. For simplicity,

N can be measured in millions, meaning values less than 1 are still meaningful. Given the current

population, can we predict how it will change? To begin, consider the per capita birth rate, B, which

represents the number of babies born per second, divided by the total population at that moment. The

value of B varies — it might be small in a populous country or large in a smaller one, depending on

societal factors like cultural attitudes toward marriage and children. B could depend on time t and the

current population N.

For simplicity, we assume that B is constant, i.e. people will always have as many children as possible,

regardless of time or population size. In this case, the number of births over a small time interval δ t

is given by BNδ t.

Similarly, consider the per capita death rate D, which also depends on t (i.e. better healthcare) or

N (i.e. overcrowding). Assuming D is constant, the number of deaths over δ t is DNδ t.

Assuming no immigration or emigration, the change in population, δN, over δ t is simply the

difference between births and deaths. That is,

δN = births−deaths = (B−D)Nδ t.

Recall from MA2002 that we can divide throughout by δ t and take the limit as δ t → 0. We then

obtain the differential equation

dN
dt

= (B−D)N = kN where k is the net growth rate.

This simple model was first proposed by Thomas Malthus in 1798, laying the foundation for what is

now known as Malthusian population growth (Definition 3.1).

Definition 3.1 (Malthusian growth model). Let N denote the current population, B and D

denote the birth rate and death rate respectively. Then,

dN
dt

= (B−D)N.

The Malthusian model predicts exponential growth if k > 0 or exponential decay if k < 0,

assuming constant birth and death rates. To see why, one can easily solve the differential equation
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in Definition 3.1 to deduce that

N = N0ekt where k = B−D.

0.2 0.4 0.6 0.8 1 1.2 1.4

2

4

6

8

10

x

y

y = N0ekx where k > 0
y = N0ekx where k < 0

y = N0

Figure 4: Interpretation of the Malthusian growth model

Malthus’ model is interesting as it shows that static behaviour patterns can lead to disaster. As ekt

grows so quickly for k > 0, Malthus’ assumptions must eventually go wrong — obviously there is

a limit to the possible population. Eventually, if we do not control B, D will have to increase, so we

have to assume that D is a function of N. Hence, we turn to Verhulst’s model, which will be discussed

in the next section.

3.2. Verhulst’s Model of Population Growth

Previously, we mentioned that the death rate D, should depend on N. A natural starting point is

the simplest possible choice, i.e.

D = sN where s is a constant.

This assumption is often referred to as the logistic assumption. It captures the idea that finite

resources in the environment lead to higher death rates as the population increases due to factors

like starvation and disease. Hence, we obtain Verhulst’s logistic growth model, which was proposed

by Pierre-François Verhulst in the 19th century.

Definition 3.2 (Verhulst’s logistic growth model). Again, let N denote the current population,

B and D denote the birth rate and death rate respectively. Then, we can write

dN
dt

= BN −DN = BN − sN2 = BN
(

1− sN
B

)
.
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We shall analyse Verhulst’s growth model. Suppose the initial population N0 is small. Then, N (t)

will remain small as well. Since N2 becomes negligible compared to N, the equation simplifies to

dN
dt

≈ BN which has solution N = N0eBt.

Thus, for small populations, the growth is approximately exponential, as predicted by Malthus.

As the population grows, the quadratic term sN2 dominates as N2 increases much faster than N.

At some point, the terms BN and sN2 balance, i.e. BN = sN2. This happens when

N ≈ B
s
.

At this population size, the growth rate dN/dt becomes zero, indicating that the population stabilises.

As such, the quantity B/s would be of interest.

Definition 3.3 (carrying capacity). In Verhulst’s growth model, the value B/s is called the

carrying capacity of the environment, representing the maximum sustainable population under

the given conditions.

Note that Verhulst’s equation can be easily solved by partial fraction decomposition (see Figure

5 for the graph of the logistic curve). Here, we consider the possibility that we begin with a small

population, i.e. N0 < B/s†.

t

N

N = B/s

Figure 5: Graph of the logistic function

3.3. Harvesting

One major application of mathematical modelling is in dealing with populations of animals. We

wish to know how many we can eat (say fish). We will build on Verhulst’s model, i.e. assume that

the fish population would follow that model if we did not catch any. Next, we assume that we catch

H fish per unit time (say year). Then, the new differential equation representing a basic harvesting

†The case where N0 > B/s will not be discussed. In this other scenario, we assume that we begin with a large population,

i.e. N0 > B/s. Then, the solution is monotonically decreasing, but again, the asymptotic value is the same.
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model can be written as

dN
dt

= bN − sN2 −H.

Again, one can use partial fraction decomposition to determine the solution to the differential

equation.
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4. Systems of First-Order Differential Equations

4.1. Solving Systems of Ordinary Differential Equations

Relationships often go through ups and downs. We shall explore a mathematical model to capture

this phenomenon. Romeo loves Juliet, but Juliet has a subtler response. When Romeo shows strong

affection, Juliet finds his enthusiasm overwhelming, making her feelings for him cool down. However,

when Romeo becomes indifferent, Juliet finds him mysteriously attractive. Romeo, on the other hand,

reacts more directly: his love for Juliet increases when she is warm and decreases when she is cold.

Let R(t) and J (t) denote Romeo’s and Juliet’s feelings over time. These feelings can be modelled

using the system of first-order linear ordinary differential equations as follows:

dR
dt

= aJ and
dJ
dt

=−bR where R(0) = α and J (0) = β .

Here, a,b > 0 are positive constants and α,β are initial feelings at t = 0. This system describes the

interaction between their feelings.

We propose solutions of the form

R = Aeλ t and J = Beλ t .

Note that these can be obtained by transforming the system into two separate second-order linear

differential equations, and then construct the characteristic equation to find the solution. Anyway,

returning to the Romeo and Juliet problem, substituting R and J into the differential equations yields

Aλ = aB and Bλ =−bA.

Eliminating A and B, we have λ 2 = −ab. Since λ 2 < 0, the solutions are complex, i.e. λ = ±i
√

ab.

As such, the general solution can be expressed as a linear combination of sin and cos as follows:

R =C cos
(√

abt
)
+Dsin

(√
abt

)
and J = E cos

(√
abt

)
+F sin

(√
abt

)
All that is left is to find C,D,E,F . This can be done so by considering the initial conditions. As such,

R = α cos
(√

abt
)
+β

√
a
b

sin
(√

abt
)

and J = β cos
(√

abt
)
−α

√
b
a

sin
(√

abt
)
.

Motivated by the above, we consider a more general system, i.e.

dx
dt

= ax+by

dy
dt

= cx+dy

We can write this as a matrix equation, which is

d
dt

[
x

y

]
=

[
a b

c d

][
x

y

]
.
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We consider the solution

u =

[
x

y

]
= ertu0 where u0 =

[
x0

y0

]
.

As such,

rertu0 = Bertu0 where B =

[
a b

c d

]
,

or equivalently,

Bu0 = ru0.

This is analogous to the matrix equation Av = λv, where λ and v are an eigenvalue and corresponding

eigenvector of the matrix A! As such, the possibilities of r are given by the eigenvalues of B. We have

(B− rI)u0 = 0

so non-trivial solutions exist if det(B− rI) = 0, i.e. if (a− r)(d − r)−bc = 0. Except the case where

this quadratic polynomial in r has two repeated roots (i.e. discriminant zero), we must have two

solutions r1 and r2, which implies

u = c1er1tu1 + c2er2tu2,

where c1 and c2 are constants and u1 and u2 are the eigenvectors of r1 and r2 respectively. Naturally,

r1 and r2 might be complex so we might have to interpret the exponential functions in terms of sine

and cosine.

Example 4.1. Solve
dx
dt

=−4x+3y

dy
dt

=−2x+ y

Solution. In fact, such questions are also covered in MA3220. The matrix representation is[
−4 3

−2 1

]
which has eigenvalues −1 and −2.

The eigenspaces are

E−1 = span

{[
1

1

]}
and E−2 = span

{[
3

2

]}
.

The general solution is [
x

y

]
= c1e−t

[
1

1

]
+ c2e−2t

[
3

2

]
.

In other words,

x = c1e−t +3c2e−2t and y = c2e−t +2c2e−2t .

One can deduce the values of c1 and c2 given the values of x(0) and y(0). □
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5. Modelling with Non-Linear Systems

5.1. The Lotka-Volterra Model

Lions like to eat zebras, and depend on them. That is, the lion population goes up if there are

many zebras. However, if there were no zebras, then the lions would die out. The zebras eat grass,

and would get along just fine if there were no lions. Their population tends to go down when there are

lions about but when left to themselves, their population goes up.

Suppose at time t, there are L(t) lions and Z (t) zebras, and assume a Malthusian model for both

the lions and zebras in the absence of the other. We shall assume that there is a stab equilibrium at

populations (L0,Z0). This suggests that we can devise the following model:

dL
dt

=−(L−L0)+2(Z −Z0)

dZ
dt

=−2(L−L0)+
1
2
(Z −Z0)

This resembles the models mentioned in the previous chapter, except that the equilibrium has been

shifted from (0,0) to a point in the first quadrant. One can verify that in this case, the equilibrium

point is indeed (L0,Z0). In fact, it is a type of stable equilibrium — it is a spiral sink. If there is some

kind of disturbance, the populations of lions and zebras fluctuate up and down for a while but they

eventually get close to equilibrium.

We shall further analyse this model. Suppose L(0) = 0 and Z (0) = 0. Then, when t = 0, dL/dt =

L0−2Z0 which is non-zero. The same can be said for dZ/dt when evaluated at t = 0. This means that

lions and zebras are coming into existence out of nothing or that we will immediately have negative

numbers of animals! Moreover, the system we are trying to model has two equilibria — other than

(L0,Z0), we also have (0,0). That is, it must always be possible to have no lions and no zebras.

However, this is not what we will get or with any linear model as such systems only ever have one

equilibrium point.

We shall construct a different mathematical model for the lion and zebra situation. This is similar

to the logistic model we discussed previously in a sense that the death rate per capita of zebras, DZ ,

is not fixed. Here, DZ depends on the number of lions, so suppose

DZ = sL where s is a positive constant.

The constant s tells us something about the relationship between lions and zebras. We continue to

assume a Malthusian model for the zebra birth rate per capita, BZ . As such, we have

dZ
dt

= BZZ − sLZ.

What about the lions? When there is a shortage of zebras, they can eat other animals so they will

not really starve. However, zebras are nice and fat, so the ones which really suffer from a shortage of
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zebras is not the adult lions but rather, the baby lions. This is because if there is an insufficient number

of nice and fat zebras around, then the mother lion cannot produce enough milk for the young, and

the latter will die. As such, the effect of a shortage of zebras is to reduce the effective birth rate of the

lions. Hence, we use a Malthusian model for the death rate of the lions. We write

dL
dt

= uZL−DLL.

The pair of equations

dZ
dt

= BLZ − sLZ

dL
dt

= uZL−DLL

givesa famous model of such populations known as the Lotka-Volterra model, or the predator-prey

model. One verifies that (L,Z) = (BZ/s,DL/u) is an equilibrium point, and so is (L,Z) = (0,0)! As

such, we are on the right track. However, the Lotka-Volterra eqautions are non-linear!

5.2. Linearisation

Recall the Taylor series expansion for functions of several variables from MA2104/MA3210.

Now, suppose that we have a pair of non-linear simultaneous first-order ODEs governing a pair of

functions of time (x(t) ,y(t)) of the ofrm

dx
dt

= f (x,y)

dy
dt

= g(x,y)

and suppose that this system is known to have an equilibrium point at (x,y) = (a,b). This implies

f (a,b) = g(a,b) = 0. As such, when we obtain the Taylor series expansion for these two functions

around the point (a,b), the constant term vanishes! Keeping the linear terms and discarding terms of

higher order, we obtain the following equations:

dx
dt

≈ fx (a,b)(x−a)+ fy (a,b)(y−b)

dy
dt

= gx (a,b)(x−a)+gy (a,b)(y−b)

which we can write as [
dx
dt
dy
dt

]
=

[
fx (a,b) fy (a,b)

gx (a,b) gy (a,b)

][
x−a

y−b

]

and now, the equations have become linear! One recalls from MA2104/ST2131 that the matrix of

partial derivatives here is known as the Jacobian matrix. In summary, near an equilibrium point, a

non-linear system can be approximated by a certain linear system with a matrix given by the Jacobian

of the original system. This new system is called the linearisation of the original system. Indeed, this

is a good piece of news as we can now apply knowledge from the previous chapter to solve our new
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pair of differential equations! In particular, the classification theorem of equilibrium points (recall

MA3220) now applies. As such, we still have a good idea of what is happening in the phase diagram

near to those points — we just have to compute the Jacobian there.

Example 5.1 (lions and zebras). Now, recall the Lotka-Volterra equations for the lion and zebra

problem. That is,

dL
dt

= uZL−DLL = f (L,Z)

dZ
dt

= BZZ − sLZ = g(L,Z)

The Jacobian matrix here is

J(L,Z) =

[
uZ −DL uL

−sZ BZ − sL

]
and we wish to evaluate it at the two equilibrium points.

The first is (L,Z) = (0,0) and so

J(0,0) =

[
−DL 0

0 BZ

]
.

It is easy to see that this is a saddle point. Since the matrix J(0,0) is diagonal, the eigenvalues are the

diagonal entries, namely −DL and BZ , with corresponding eigenvectors (1,0) and (0,1) respectively.

One checks that this makes sense because in the phase plane, everything is rushing towards the origin

along the lion axis and away from the origin along the zebra axis. We can expect that if we start

nearer to the L-axis, then the lion population will decrease greatly until the zebra populaltion increases

rapdily, which makes sense!

The other equilibrium point is (L,Z) = (BZ/s,DL/u), and one checks that

J
(

BZ

s
,
DL

u

)
=

[
0 uBZ/s

−sDL/u 0

]
which we recognise as a centre. As such, in the middle of the phase diagram corresponding to large

numbers of both lions and zebras, we expect to see the swirling motion. In fact, the direction of motion

is clockwise.

Now, take the two Lotka-Volterra equations, multiply the dL/dt equation by BZ/L− s, and multiply

the dZ/dt equation by DL/Z −u. Adding the resulting equations, we have(
BZ

L
− s

)
dL
dt

+

(
DL

Z
−u

)
dZ
dt

= 0.

Hence,

BZ lnL− sL+DL lnZ −uZ = c,
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where c is an arbitrary constant. This is an exact relation between Z and L although the equation

cannot be explicitly solved. One way to draw the graphs is to define a function F (L,Z) on the phase

plane by

F (L,Z) = BZ lnL− sL+DL lnZ −uZ.

One checks thatt this function has a global minimum at the point (L,Z) = (BZ/s,DL/u), with contour

curves around that point which are all closed. Since the paths in the phase plane are all closed curves,

we see that all solutions of the Lotka-Volterra equations are periodic.

The Lotka-Volterra model can be used to understand an interesting paradox known as the paradox

of pesticides. This is the strange observation that when a certain pest has a predator, using pesticides

can actually leads to more pests than we had initially!

5.3. Logistic Lotka-Volterra Model

The Lotka-Volterra model assumes that the zebra population grows according to a Malthusian

model when there are no lions. We know that this is not realistic so we should use something like the

logistic model for them, while keeping the old equation for the lions. As such, we obtain the following

pair of differential equations:

dL
dt

= uZL−DLL

dZ
dt

= BZZ − pZ2 − sLZ

Here, p is the logistic constant, so the equilibrium population of zebras would be BZ/p in the complete

absence of lions.

In this model, there are actually three equilibrium points in the phase diagram. The first is the obvious

one (0,0). The second is almost as obvious, i.e. if there are no lions, then the zebras will approach a

logistic equilibrium along the Z-axis, i.e. the point (0,BZ/p). The third and most interesting one is at(
BZ − pDL/u

s
,
DL

u

)
.

We omit the remaining details.
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6. Modelling with Partial Differential Equations

6.1. Introduction

Definition 6.1 (partial differential equation). A partial differential equation (PDE) is an

equation containing an unknown function u(x,y, . . .) of two or more independent variables

x,y, . . . and its partial derivatives with respect to these variables. We call u the dependent

variable.

PDEs allow us to deal with situations where something depends on space as well as time. So far,

all the models that we studied so far have only involved variations with time.

We discuss a method to solve PDEs known as the separation of variables. This method can be used

to solve PDEs involving two independent variables say x and y that can be separated from each other

in the PDE. There are similarities between this method and the technique of separating variables for

ODEs in the first chapter.

We make the following observation. Suppose

u(x,y) = X (x)Y (y) .

Then,

ux = X ′ (x)Y (y)

uy = X (x)Y ′ (y)

uxx = X ′′ (x)Y (y)

uyy = X (x)Y ′′ (y)

uxy = X ′ (x)Y ′ (y)

Note that each derivative of u remains separated as a product of a function of x and a function of y.

We can exploit this feature. Consider a PDE of the form

ux = f (x)g(y)uy.

If a solution of the form u(x,y) = X (x)Y (y) exists, then one can deduce that

1
f (x)

· X ′ (x)
X (x)

= g(y) · Y ′ (y)
Y (y)

.

The important observation here is that the LHS is a function of x whereas the RHS is a function of

y. We conclude that the LHS and RHS both equate to some constant k. As such, we obtain the two

ODEs as follows:

1
f (x)

· X ′ (x)
X (x)

= k and g(y) · Y ′ (y)
Y (y)

= k.

In fact, it is easy to solve this pair of differential equations!
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Example 6.1. Solve ux + xuy = 0.

Solution. Suppose a solution of the form u(x,y) = X (x)Y (y) exists. Then, we deduce that

X ′ (x)Y (y)+ xX (x)Y ′ (y) = 0

1
x
· X ′ (x)

X (x)
=−Y ′ (y)

Y (y)

As such,

1
x
· X ′ (x)

X (x)
= k and − Y ′ (y)

Y (y)
= k.

This implies that X (x) = aekx2/2 and Y = be−ky for some constants aA and b. As such, the general

solution is

u(x,y) = X (x)Y (y) = cekx2/2−ky.

Here, c = ab is also a constant. □

6.2. The Wave Equation

Consider a flexible string that lies stretched tightly (another word would be ‘taut’) along the x-axis

and has its ends fixed at x = 0 and x = π . We pull it along the u-axis so that it is stationary and has

some specific shape u = f (x) at time t = 0. Consequently, f (0) = 0 and f (π) = 0. We can assume

that f (x) is continuous and bounded. When we let go of the string, it will move. We assume that the

only forces acting are those due to the tension in the string and that the pieces of the string will only

move along the u-axis.

Now, the u-coordinate of any point on the string will become a function of time as well as a function

of x. So, it becomes a function u(t,x) of both t and x. Note that this function satisfies the boundary

conditions

u(t,0) = 0 and u(t,π) = 0

for all t as the ends are nailed down. Also, the initial condition

u(0,x) = f (x) is satisfied.

Also, since the string is initially stationary, then

∂u
∂ t

(0,x) = 0.

We now introduce the wave equation.
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Definition 6.2 (wave equation). Let c be a fixed non-negative real constant representing the

propagation speed of the wave. Then,

∂ 2u
∂ t2 = c2 ∂ 2u

∂x2 .

Also, u(t,0) = u(t,π) = 0, u(0,x) = f (x) and ut evaluated at t = 0 gives 0.

We note that the function

u(t,x) =
f (x+ ct)+ f (x− ct)

2
is a solution to the wave equation.

More generally, we have D’Alembert’s formula (Theorem 6.1). One should check that the above

equation indeed satisfies the wave equation. Moreover, the four conditions should be satisfied.

Theorem 6.1 (D’Alembert’s solution to the wave equation). The function

u(t,x) =
f (x+ ct)+ f (x− ct)

2
+

1
2c

∫ x+ct

x−ct
g(ξ ) dξ

is a solution to the wave equation (Definition 6.2).

Initially, f (x) was only defined between x = 0 and x = π , but the interpretation of D’Alembert’s

solution is that we can extend f (x) to be an odd, periodic function of period 2π , for which one can

then verify that u(t,0) = u(t,π) = 0.

Consider a function f (x) defined on [0,π]. We aim to extend f to an odd periodic function with

periodic 2π , covering R. First, we define f on [−π,π] as an odd function, i.e. for any x ∈ [−π,0],

define f (−x) = − f (x). This extension makes f an odd function on [−π,π]. Next, we extend f

periodically across the real line, i.e. for any x outside [−π,π], define

f (x) = f (x−2nπ) where n ∈ Z and x−2nπ ∈ [−π,π] .

This creates a periodic function with period 2π .

We then consider the function f (x− ct), where c > 0. Note that f (x−1) is the same as f (x), just

shifted 1 unit to the right. Similarly, f (x− ct) represents the same shape as f (x) but shifted to the right

by ct units. The function f (x+ ct) represents f (x) shifted to the left by ct, moving in the opposite

direction with the same speed.

Geometrically, D’Alembert’s solution describes the solution to the wave equation as a combination

of two travelling waves, where the term

f (x− ct)/2 representsa wave traveling to the right at speed c and

f (x+ ct)/2 representsa wave traveling to the left at speed c
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Each piece maintains the shape of the original function f (x)/2 and moves without distortion.

We can also solve the wave equation using the method f separation of variables. Suppose we wish

to solve

utt = c2uxx

subjected to the following conditions:

u(t,0) = u(t,π) = 0 u(0,x) = f (x) ut (0,x) = 0

We separate the variables, i.e.

u(t,x) = v(x)w(t)

and obtain

v′′ (x)
v(x)

=
1
c2 ·

w′′ (t)
w(t)

=−λ .

The usual separation argument from before implies λ is a constant, so we obtain the following pair of

ODEs:

v′′+λv = 0 and w′′+λc2w = 0

Let us force v(x) to vanish at x = 0 and x = π , so we can set

u(t,0) = v(0)w(t) = 0 and u(t,π) = v(π)w(t) = 0.

This is somewhat different from the usual scenario of solving second-order ODEs. Normally, we

give some information about the function at one point, i.e. we might ask for solutions to the ODE

y′′+λy = 0 where y(0) and y′ (0) are given. However, we are now giving the information from two

different points.

If λ < 0, then u(0) = 0 implies that all solutions to the equation v′′ + λv = 0 are proportional to

sinhx, and such a function cannot intersect the x-axis twice. As such, λ cannot be negative. If λ = 0,

then v(x) is a straight line function which cannot intersect the x-axis twice. As such, λ > 0. We write

λ = n2 for some n > 0. As such,

v(x) =C cosnx+Dsinx for some constants C and D.

Since v(0) = 0, then C = 0 and so v(x) = Dsinnx. If we want v(π) = 0, then it implies sinnπ = 0. As

such, n ∈ Z so we also introduce this constraint. Earlier, we mentioned that n > 0. Combining both

properties, we conclude that n ∈ Z+.
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Solving the other equation for w(t), we obtain

w(t) = Acosnct +Bsinnct for some constants A and B.

We force w(t) to satisfy w′ (0) = 0 since we want ut (0,x) = u(x)v′ (0) = 0. So, now B = 0 and we

are left with w(t) = Acosnct. As such, our complete solution is

u(t,x) = bn sinnxcosnct.

Here, bn is an arbitrary constant and again, recall that n is a positive integer. This satisfies three of the

four conditions in Definition 6.2. So, the only condition that is not yet satisfied is u(0,x) = f (x).

We recall some concepts from MA2101. Think about the set of all continuous functions on [0,π].

It is a vector space over R (an obvious fact). What is a possible basis for it? Well, an example of a

basis is given by the following set: {
sinnx : n ∈ Z+

}
In other words, any continuous function g on [0,π] can be expressed as the following:

g(x) =
∞

∑
n=1

bn sinnx.

This holds for certain real numbers bn. In particular, the formula for bn is

bn =
2
π

∫
π

0
g(x)sinnx dx.

That is, 2/π times the integral plays the role of the scalar product here. The series

∞

∑
n=1

bn sinx where bn =
2
π

∫
π

0
g(x)sinnx dx

is known as the Fourier series of g(x). There is an amazing fact that the Fourier series allows us

to express any function on this interval as the components — bn! We now return to the problem of

solving the wave equation. Recall that we have extended f (x) to be an odd function of period 2π .

As such, it has a Fourier sine series, and since f is continuous and has only a finite number of sharp

corners, we have

f (x) =
∞

∑
n=1

bn sinnx.

Now, consider the series

∞

∑
n=1

bn sinnxcosnct where bn =
2
π

∫
π

0
f (x)sinnx dx.

First, observe that if we substitute t = 0 in this series, then we obtain f (x) expressed as its Fourier

sine series. Next, since the wave equation is linear and each term in this series is a solution to the
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wave equation, then this series is also a solution to the wave equation.

To summarise, the solution to the wave equation is

u(t,x) =
∞

∑
n=1

(
2
π

∫
π

0
f (x)sinnx dx

)
sinnxcosnct

We have done everything for the interval [0,π]. For a general interval [0,L] of any length L, it is easy

to obtain a solution to the modified wave equation. The basis functions are now sin(nπx/L) which

are periodic with period 2L instead of 2π like before. The Fourier series formulae are

g(x) =
∞

∑
n=1

bn sin
(nπx

L

)
and bn =

2
L

∫ L

0
g(x)sin

(nπx
L

)
dx.

f will now be a function that vanishes at 0 and L!

6.3. The Heat Equation

Consider the temperature in a long thin bar or wire of constant cross-section and homogeneous

material which is oriented along the x-axis and is perfectly insulated laterally, so that heat only flows

in the x-direction. Then the temperature u depends only on x and t and is given by the one-dimensional

heat equation.

Definition 6.3 (heat equation). The heat equation states that

ut = c2uxx,

where c2 is a positive constant called the thermal diffusivity (sometimes this is denoted by κ).

It measures how quickly heat moves through the bar and depends on what it is made of.

Let us assume that the ends x = 0 and x = L of the bar are kept at temperature zero, so that we

have the following boundary conditions:

u(0, t) = 0 u(L, t) = 0 for all t,

and the initial temperature of the bar is f (x), so that we have the initial condition

u(x,0) = f (x) .

Here, we will assume that when f (x) is extended to be an odd function, it equals its Fourier sine

series everywhere. Remember that this can happen, even if f (x) is discontinuous at some points.

Notice that, unlike the wave equation, which needs four pieces of data, here we only need three,

which matches the fact that the heat equation only involves a total of three derivatives (two in the

spatial direction, but only one in the time direction).
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The heat equation is particularly useful in modeling for the following reason. Think of an ordinary

function, g(x). We can think of its second derivative g′′ (x) as a measure of the extent to which its

graph is not a straight line (recall that the second derivative is zero everywhere if and only if g(x) is a

linear function). We say that g′′(x) measures the curvature of the graph.

The heat equation says that the second spatial derivative of u is equal to its time derivative. So as

time goes by, if the graph of u as a function of x is concave up, then u will increase; whereas if the

graph is concave down, then it tends to decrease. The effect in both cases is to reduce the curvature.

So we can picture the equation as something that, given an initial shape described by f (x), tries to

“straighten it out.” And of course, that is how we expect heat to behave, i.e. heat flows from a hotter

region to a cooler region, trying to even out its distribution.

It turns out that the solution of the one-dimensional heat equation looks like this.

u(x, t) =
∞

∑
n=1

bn sin
(nπx

L

)
exp

(
−n2π2c2

L2 t
)
,

where the bn are just the Fourier sine coefficients of f (x).

Notice that we get exponentials here instead of sines. That is because the separated equation for the

function of t is first-order (for obvious reasons), and as we know, first-order ordinary differential

equations tend to have exponential solutions. Because of this, the solutions to the heat equation

depend on the direction of time. This means that this PDE is useful for modeling situations involving

irreversible time evolution.

6.4. Fisher’s Equation

Life on dry land took a long time to evolve: animals and plants had lived in the sea for hundreds of

millions of years before that happened, roughly 450 million years ago. Of course, it must have started

along the sea shore, that is, along a line. There must have been some kind of marine plant growing

along the shore line; a mutation occurred (helped by the extreme exposure to sunlight) which made

one of them, at some particular time and place, better able to tolerate drying out. The descendants

of that individual had a tremendous advantage over the non-mutated neighbours because sometimes

there is a succession of exceptionally low tides which leave the plants dry for a long time. So they

would have outcompeted their neighbours, and the mutation would have spread along the shoreline

like a wave. Eventually, the result would be a plant that could survive out of the water full-time.

The process of spreading along the shoreline is clearly irreversible, so we need an equation like the

heat equation, not the wave equation: we need a heat equation with a wave-like solution! On the other

hand, we do not want the effect to go away, like the temperature going down as heat dissipates. What

we need is a combination of the Heat Equation with our model of the spread of a rumour. In 1937,
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Ronald Fisher proposed the following equation to model this situation:

ut = αuxx +βu(1−u)

where u(x, t) is the fraction of the plants at any given place and time which have mutated (so 1−u(x, t)

is the fraction which haven’t). This is indeed a combination of the Heat Equation with the rumour

equation! The constant α tells you how quickly the mutation tends to spread in space, while β

measures how quickly it grows in time at a specific point in space (they have different units, of course).

This is a non-linear partial differential equation, and finding all of its solutions is very difficult. But it

is important because it has many other applications, for example to the theory of how flames move and

to the theory of how nuclear reactors work. To solve this equation, we specify some initial function

f (x) = u(x,0) and then try to evolve it forward in time. A good model for f (x) would be a delta

function.

We seek a wave solution of the form

u(x, t) =U(x− ct)

where U(s), s = x− ct, describes the wave moving to the right at constant speed c. Substituting this

into Fisher’s equation gives

αU ′′+ cU ′+βU −βU2 = 0.

This ODE has two equilibria: (U,U ′) = (0,0) and (U,U ′) = (1,0). The Jacobian at these equilibria

determines their stability. We have

J(U,U ′) =

[
0 1

β

α
(2U −1) − c

α

]
.

We omit the remaining details.
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